

Odin Program: Presentation Attack Detection

Lars Ericson | Program Manager | November 28, 2018

Office of the Director of National Intelligence

IARPA Mission and Method

IARPA's mission is to invest in high-risk/high-payoff research to provide the U.S. with an overwhelming intelligence advantage

Bring the best minds to bear on our problems

- Full and open competition to the greatest possible extent
- World-class, rotational Program Managers

Define and execute research programs that:

- Have goals that are clear, measureable, ambitious and credible
- Employ independent and rigorous Test & Evaluation (T&E)
- Involve IC partners from start to finish
- Run from three to five years
- Publish peer-reviewed results and data, to the greatest possible extent

Odin Program Goal

Goal: Develop biometric presentation attack detection technologies to detect when someone is attempting to disguise their biometric identity

Program Pillars

- Capable of detecting known and unknown attacks
- Ability to operate at relevant true/false detection rates
- Biometric recognition at the level of existing technology

Definition of Biometric Presentation Attacks

- Biometric Presentation Attacks (PAs), colloquially referred to as spoofs, are attacks launched against a biometric identification system that intentionally causes the sensor to fail to record the true biometric identity instead recording an alternate identity
 - Traditionally this has been accomplished by a physical prosthetic such as a latex/putty fingerprint

Odin Teams in Phase 2

Phase 2 **Teams**

Phase 1 **Team**

Standards and Technology

APPLIED PHYSICS LABORATORY

Finger

ri.

ط ال ال

Michigan State University

Figures are UNCLASSIFIED

Sensor-based PAD Methods

- Open Source FTIR RaspiReader (MSU)
- Hybrid electro-optic (Silk ID)
- Fast Frame Rate (Silk ID)
- Multi-Camera/Multi-Imaging (Silk ID)

Image-based PAD Methods

- Minutiae-based CNN Approach
- Dynamic Characteristics of Fingerprint

Corneal Birefringence PAD

- Human eyes produce birefringence characterized with specific properties
- Multi-patch CNN
 - Use deep learning techniques to learn optimal features
 - Examine CNN anatomy to analyze how the models detect PAs

- CNN Spatial supervision: pseuddepth map estimation
- RNN Temporal supervision: rPPG signal estimation

Finger

<u>.</u>

University of Southern California - ISI

Figures are UNCLASSIFIED

- CMOS Mono NIR Back-Illumination (940 nm,3072x2048)
- CMOS Multispectral (Vis/NIR)(same as face)
- InGaAs Multispectral (SWIR)(same as face)
- InGaAs Laser Speckle Contrast Imaging (LSCI)(same as face)

Image-based PAD Methods

- Luminosity-based PAD
- Blood Motion-based PAD
- Texture-based PAD
- Skin Detection-based PAD

Hamamatsu SWIR Multispectral Imaging lens 1310nm Fiber Illuminator Back Illumination Camera Multispectral Camera LEDs

Multispectral camera

 Visible and 5 near-infrared spectral bands: 800nm, 830nm, 850nm, 870nm and 970nm

Software-based PAD

- Feature extraction: Gaussian, Laplacian, Steerable pyramids and LBP
- Classification: SVM, Softmax

Multi-spectral Imaging

 Intel RealSense SR300 Camera, Thermal Camera, CMOS Multispectral, Multispectral SWIR, InGaAs Laser Speckle Contrast Imaging (LSCI)

Software-based PAD

 Motion features caused by facial expression

Temporal color changes caused by blood flow

Odin Program Metric

- Presentation Attack Detection
 - True Detect Rate (TDR) = Likelihood of correctly identifying a biometric PA
 - False Alarm Rate(FAR) = Likelihood of incorrectly identifying a biometric sample as PA when it is a genuine sample
 - TDR @ FAR < X= Likelihood of correctly identifying a PA for a fixed likelihood of a false alarm</p>

Caveat

- Numbers are not go/no go
- Meaning is complicated by different PA's

	Phase 1	Phase 2	Phase 3
TDR @ 0.2% FAR	85%	95%	97%
Total Subjects	620	1700	2200

Number of Subjects	90% interval	
10		
20	0 ± 5.83%	
35	0 ± 4.40%	
62	0 ± 3.31%	
1,70	0 ± 2.00%	
2,20	0 ± 1.76%	
5,00	0 ± 1.17%	
10,00	0 ± 0.825%	
100,00	0 ± 0.26%	

Odin Program Constraints

Biometric Performance

- False Match Rate (FMR) = Likelihood that a system will incorrectly determine that two biometric samples match (e.g., samples belonging to different subjects)
- False Non-Match Rate (FNMR) = Likelihood that a system will incorrectly determine two biometric samples do not match (e.g., samples belonging to the same person)
- Determined via baseline testing on the same dataset calibrated on a larger dataset

Operational

- Projected Component Cost = total cost of the components of the PAD system at volume (Less than \$5,000)
- Temporal Representation = time required to acquire data from subject to determine if biometric sample is a PA (Less than 30 seconds)

Test and Evaluation Objectives

- Phase 1
 - Focus on known PAs
- Phase 2
 - Focus on unknown PAs
- Phase 3
 - Focus on known and unknown PAs while maintaining operational relevance (cost, time, legacy performance)
- Government Controlled Tests
 - Goals
 - Collect high quality data that will be used to determine top performers
 - Analyze data results, characterize capabilities
 - Characterize the performance of an array of commercial biometric sensors against a range of presentation attacks

Phase	Month	Test Type	Attack Trials	True Attempts	Date
1	9	Self	50	100	Dec '18
1	13	Self	60	120	Apr '18
1	14	Government	200	400	May '18
2	26	Self	200	400	Feb '19
2	27	Government	100	200	May '19
2	32	Self	100	400	Aug '19
2	33	Government	200	500	Nov '19
3	38	Self	100	200	Apr '20
3	39	Government	100	250	May '20
3	45	Self	500	750	Nov '20
3	46	Government	500	1000	Dec '21

Presentation Attack Recipe Card

Visible Face Video Replay

Species: Face Video Replay

Series: MBGC V1

Dependencies: IRB Defined by IRB governing image collection

License Approval: MCGC V1 dataset

Equipment: Computer, tablet or standard monitor

GFE: N/A

Resources: Expertise: Low

Lab space: Low

Storage Space: Low

Time: Low

Money: Low

Materials: Computer, tablet or phone display

Settings: Display: Computer, tablet or standard monitor

Resolution: 1920 x 1080

Scaling: 100% (no zoom)

To download, your institution must sign the license agreement and obtain access to ND Multiple Biometric Grand Challenge v1:https://sites.google.com/a/nd.edu/public-cvrl/data-sets

Graphic is UNCLASSIFIED

ND Multiple Biometric Grand Challenge (MBGC) V1 Visible Face Video **05186v191.ts** (or similar video)

Odin GCT: Face Presentation Attacks

Figures are UNCLASSIFIED

List of Face Attacks				
Analog photograph Glossy paper	Photo of Drew			
Analog photograph Glossy paper	Photo of Diane			
Halloween Transparent Mask with Makeup	Old Man Grump			
Halloween Transparent Mask with Makeup	Frenchman			
High Quality Composite Effects Full Silicone Mask	Mac the Guy			
High Quality Composite Effects Full Silicone Mask	Derek			
High Quality Composite Effects Full Silicone Mask	Remy the Stranger			
Makeup Heavy Contour, COTS makeup	Contour v2			
Makeup Old Age, COTS makeup				
Facial Disguise Paper glasses	Peach (light)			
Facial Disguise Paper glasses	Brown (dark)			
Silicone Partial face mask	Silicone Mask			

Score 3.6 Complexity

Silicone face mask (Video)

MEDIUM-HIGH

Mac the Guy Low Low-Medium Medium-High High **Scale Value Coded Value** 3

Derek

Remy the Stranger

Score 3.6 Complexity

MEDIUM-HIGH

Photo of Drew Score 1.4 **LOW** Complexity

Peach (light) Score 1 Complexity

LOW

Frenchman with, without Makeup Score 1 **LOW** Complexity

Old Man Grump Score 1

LOW Complexity

Old Age Makeup Score 2.5 Complexity

Performance on Key Metrics (Phase 1)

H1 (Odin Objective): Harden biometric collection systems against known and unknown presentation attacks (PAs)

Focus of phase 1 is on detecting known attacks

Finger	
TDP @	ALIC

	TDR @ 0.2% FAR	AUC
Goal	85%	
Baseline	7.0%	0.97
Odin-1	98.6%	1.0
Odin-2	99.1%	1.0
Odin-3	10.4%	0.99
Odin-4	72.9%	0.96

Face

	TDR @ 0.2% FAR	AUC
Goal	85%	
Baseline	0.4%	0.81
Odin-5	51.4%	0.93
Odin-6	5.9%	0.96
Odin-7	20.6%	0.93

Iris

	TDR @ 0.2% FAR	AUC
Goal	85%	
Baseline	2.0%	0.8-0.61
Odin-8	71.4%	0.85
Odin-9	39.6%	0.91
Odin-10	4.7%	0.72
Odin-11	0.3%	0.5

14

Odin GCT-1 Results: Face

Best of Face PAD Algorithms

PA Detection ROC Curves: Face

		TDR @	TDR @	TDR @
Algorithm	AUC	0.2% FAR	2% FAR	5% FAR
Odin-5	0.93	51.40%*	70.90%	80.40%
Odin-6	0.96	5.90%	58.80%	93.00%
Odin-7	0.93	20.60%	72.70%	80.60%
Baseline	0.81	0.40%	10.10%	28.70%

* Errors in submission lowered number, Odin-5 believes they had 81.7% TDR

Overall Phase 1 Testing

- Majority of performer approaches beat the baseline PAD solutions on all modalities
- Finger performance was good across all teams and improved significantly beyond baseline methods
- Most performers had trouble with Face and Iris PAD
- Makeup Face PAs most challenging for all performers and baseline
- Contact lens Iris PAs most challenging for all performers and baseline

Face - Makeup

Iris – Contact Lens

Phase 2 Plans

- Focus on detecting unknown PAs
- Two Government Controlled Tests
- Additional emphasis on makeup and contact lenses
- Additional focus on RGB-only solutions for Face
- Prize challenge (tentative Fall 2019)
 - Algorithm PAD challenge
 - Release GCT-2 data with bona fides and PAs from baseline sensors for training/validation
 - In partnership with NIST

Contact Details

Dr. Lars Ericson (Program Manager)

- https://www.iarpa.gov/index.php/research-programs/odin
- Lars.ericson@iarpa.gov
- **301-851-7748**

Technical Support

- Dr. Nathan Short
 - Nathan.short@iarpa.gov
 - **301-851-7685**
- Dr. Simona Crihalmeanu
 - Simona.crihalmeanu@iarpa.gov
 - **301-699-6438**

Programmatic Support

- Ashley Lyles
 - Ashley.lyles@iarpa.gov
 - **301-851-7732**

18

Supplemental Slides

Odin Use Cases

Border / Travel Crossing
Visa Applications
HS Facility Access
HS Cyber Authentication
LS Facility Access
LS Cyber Authentication

Table is UNCLASSIFED

HS = High Security LS = Low Security

Crossmatch

Figures are UNCLASSIFIED

Sensor-based PAD Methods

- Hybrid TFT Fingerprint Scanner Scans fingerprints using a contact thin film transistor (TFT) sensor array
- 3D Structured Light (SLI) Fingerprint Scanner
- **Image-based PAD Methods**
 - Patch-based Deep Learning PAD (Hybrid)
 - Color Analysis (Hybrid)

- 3D Iris Scanner using structured light (SLI)
 - Device scans both eyes at once; 2D scans with 810 nm **LEDs**
- Fusion of 2D and 3D Eye Analysis
 - 2D Analysis: pupil size vs. iris circularity with polynomial boundary
 - 3D Analysis: investigating large spatial frequency variations
- Single 2D or 3D CNN PAD; Combined 2D and 3D CNN
- Fusion of Iris, Sclera, and Periocular Region Analysis

Conductive Silicone Overlay

Score 2.7

Complexity

Odin GCT: Fingerprint Presentation Attacks

List of Fingerprint Attacks			
Overlay Silicone	Yellow Silicone		
Ovelay Silicone + Addition	Fleshtone		
Overlay Silicone	Sienna		
Overlay Silicone	Nusil - Carbon conductor		
Overlay with Conductive silicone (sputter)	Print v2		
Overlay PCB Mold with Dragonskin	Print 2 with electrical tape backing		
Overlay PCB Mold with Dragonskin modified	Silver Conductive ink, custom design details		
Printed fingerprint on glossy paper v1 with conductive ink			
Printed fingerprint on conductive paper v2 (cut modified)			

Yellow Silicone Overlay Score 2.7 Complexity

Yellow Silicone Overlay + Addition Score 3.2

Complexity

		Coded
Printed finge		
Score 1 Complexity	LOW	

PCM Mold with Dragonskin Overlay

LOW-MEDIUM

PCM Mold with Dragonskin Modified Overlay

Value

Pigmented Silicone Overlay Fleshtone Score 2.7

Low Low-Medium Medium-High

Complexity

2D printed fingerprint with conductive ink Score 3.7

Complexity

Score 2.3

Score 2.5

Complexity

Complexity

Odin GCT: Iris Presentation Attacks

List of Iris Attacks			
Fake Van Dyke eye, mounted	Brown, R		
Fake Van Dyke eye, mounted	Hazel, R		
Printed iris with molded transparent dome	Transparent resin, Doll eye, R		
Cosmetic Contact lens	Acuvue Accent Vivid		
Cosmetic Contact lens	Air Optix Blue		

Van Dyke Eye Brown Score **1.3** Complexity

Van Dyke Eye Hazel Score 1.3 Complexity

Cosmetic Contact Lens
Score 2.7
Complexity

Scale Value	Low	Low-Medium	Medium	Medium-High	High
Coded Value	1	2	3	4	5

Figures are UNCLASSIFIED

Odin GCT-1 Results: Finger

Best of Finger PAD Algorithms

		TDR@	TDR@	TDR@
Algorithm	AUC	0.2% FAR	2% FAR	5% FAR
Odin-1	1	98.6%	99.1%	99.1%
Odin-2	1	99.1%	99.1%	99.6%
Odin-3	0.99	10.4%	98.4%	98.9%
Odin-4	0.96	72.9%	76.1%	82.9%
Baseline	0.97	7.0%	7.0%	96.7%

Odin GCT-1 Results: Iris

Best of Iris PAD Algorithms

		TDR @	TDR @ 2%	TDR @
Algorithm	AUC	0.2% FAR	FAR	5% FAR
Odin-8	0.85	71.4%	71.4%	72.2%
Odin-9	0.84	39.6%	55.0%	59.8%
Odin-10	0.72	4.7%	19.3%	32.3%
Odin-11	0.5	0.3%	3.1%	7.7%
Baseline-1	0.8	2.0%	20.1%	64.0%

